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ABSTRACT 

Adhesive bonding has been used to join or repair metallic and composite structural 

components to achieve or restore their designated structural stiffness and strengths. 

However, current analysis methods and empirical databases for composite bonded joint 

design and for composite bonded patch repair are limited to flat plate and/or flat laminate 

geometries, and the effect of curvature on the performance and durability of composite 

bonded joints and repairs is not known. This report presents a novel finite element 

formulation for developing adhesive elements for conducting 2.5-D quick stress analysis of 

bonded repairs to curved structures. Both large deflections of the parent structures and 

nonlinear adhesive behavior are incorporated in the formulation. An in-house software called 

BPATCH has also been developed. A variety of examples are presented to illustrate the 

effect of curvature, large deflection and adhesive nonlinear behavior on stresses in adhesive 

layer. Illustrative examples also indicate the effect of patch location, i.e., internal and 

external patches, patch size and patch thickness. 
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1. INTRODUCTION 

Adhesive-bonded patching is one of the most widely used repairing techniques to cracked or 

damaged metallic and composite structures [1,2]. In this technique; a composite patch is 

bonded to the parent structure to reinforce the cracked zone [3] and to try to restore the 

structure to its original design specifications. This technique has successfully addressed 

some of the aging aircraft problem [1], and there exists a large number of research 

publications available on analysis, testing and design of adhesive-bonded patching repairs. 

To successfully apply this technique to practical problems, one needs to consider many 

aspects of this technique, for example, stress analysis, static and fatigue strength, surface 

preparation, selection of adhesives, durability, etc. One important aspect in designing a 

bonded patch is stress analysis and strength prediction. As a bonded patch is similar to an 

adhesive-bonded joint, the concepts and methodologies developed for analyzing stresses in 

bonded joints can be readily applied to conducting stress calculation for a bonded patch. 

There is a large amount of information on stress analysis of the bonded joints and repairs in 

the literature. Most of the currently available analysis methods and empirical databases for 

composite bonded joint design and for composite patch repair designs are limited to flat plate 

and/or flat laminate geometries [1,4-6]. However, in addition to flat panels, curved panels or 

shell-type structures are widely used in the design of metallic and composite structures. 

Comparing to the knowledge of bonded joints/repairs to flat surfaces, current knowledge on 

the effect of curvature(s) on the performance and durability of composite bonded joints and 

bonded composite repairs is extremely limited. For example, the effect of curvature(s) on 

the interlaminar stresses resulting from residual curing stresses and thermo-mechanical 

loading has not been determined. It has been demonstrated in numerous programs over many 

years that the critical interlaminar stresses govern the lifetime performance of adhesive joints 

and current analysis tools for designing bonded joints for flat geometries focus on minimizing 

interlaminar stresses to maximize the joint durability. The overall objective of this research 

effort is towards development of validated new analysis methodologies for designing high- 

performance and durable bonded joints and/or repairs to curved surfaces. In this report, 

current concepts and methodologies used in bonded joints and repairs are extended to take 

into account the effect of curvature on stresses in adhesive layer. 

Stresses in adhesive layer can be determined following two types of solution procedures, 

namely, analytical and numerical analysis procedures.   In the analytical procedure, closed- 

l 



form solutions for stresses may be obtained, while in the numerical analysis procedure, finite 

element method is widely used. In general, analytical solutions are limited to simple 

geometrical configurations and material properties, while finite element method is more 

versatile in terms of geometrical configuration and material properties, thus theoretically 

speaking, it can be applied to solve most of the joints and repairs problems. In finite element 

analysis, it is desirable to conduct a full 3-D analysis to obtain an accurate and detailed stress 

information. However, a full 3-D analysis involves detailed modeling of adhesive layer and 

parent structures. In a typical 3-D analysis, brick elements are used to model the thin-walled 

structures, patches and adhesive layer and fine mesh with small size elements of the order of 

adhesive thickness must be used to maintain an appropriate aspect ratio and to obtain 

reasonable accurate numerical solutions. Thus it can be extremely expensive, and may 

become even impossible under certain circumstances. It is desirable to develop a simple, 

efficient and cost-effective theoretical framework using simple adhesive elements to capture 

the main features of stresses in the adhesive layer, to take into account the effect of curvature 

and to enable an engineer to conduct a reliable quick design. 

In this report, the effect of curvature on both peel and shear stresses in adhesive layer in 

adhesive-bonded curved patches has been presented. By assuming constant peel and shear 

strains across adhesive thickness, a new finite element formulation has been proposed for 

developing an 8-node adhesive element which can be used to calculate stresses in adhesive 

layer. In the new formulation, the bonded overlap is modeled as a sandwich type of structure 

and the strain energy of the adhesive layer is considered in terms of the nodal displacements 

and rotations of the two adjacent 4-node flat shell elements. Some illustrative examples are 

presented to demonstrate the effect of curvature on peak peel and shear stresses in the 

adhesive layer under selected loading and boundary conditions. 



2. PROBLEM STATEMENT AND BASIC ASSUMPTIONS 

A cracked or damaged thin-walled structure can be reinforced from either side of the 

structure by bonding a composite thin patch. When only one patch is bonded to one side of 

the structure it is referred to as single-sided bonded repair, when two patches are bonded to 

both sides of the structure it is referred to as double-sided bonded repair. Selection of single- 

sided or double-sided bonded repair depends on many factors, such as accessibility to either 

side of thin-walled structure, design requirements and stress environments etc. In this report 

we only consider single-sided bonded repairs to thin-walled structures. 

A significant amount of research has been performed in modeling adhesive bonded repairs to 

flat surfaces [1-3] using one-, two- or three-dimensional approaches. Although three- 

dimensional approaches are more accurate than two-dimensional theories, their 

implementation can be very expensive for practical applications. Thus in this research 

program, a two-dimensional theory for adhesive bonded repairs to cylindrically curved shell 

structures will be developed first to provide a general framework for accurate and 

computationally efficient analysis. 

Similar to a structural bonded joint [5,6], the adhesive layer in a bonded repair is often very 

thin and non-uniform due to primarily lack of technologies for accurate control of bondline 

thickness in manufacturing structural components. To model the behavior of an adhesive 

layer, it is assumed that the patch is perfectly bonded to the thin-walled structure, the 

adhesive thickness is uniform over the entire bonding area, and the adhesive layer is very thin 

and very flexible comparing to these of the patch and thin-walled structures. This is a widely 

accepted assumption in analysis of structural bonded joints [5,6]. 

The second assumption is concerned with the stresses in adhesive layer. It is assumed that 

the three in-plane stresses in the adhesive layer are extremely small comparing to the other 

three out-of-plane stress components so that they can be neglected. Thus only the normal or 

peel stress <7Kand the two out-of-plane shear stresses ryz and rxz are taken into account in 

the problem formulation. They are assumed to be constant across the adhesive thickness. 

This assumption is a natural extension of that widely used in adhesive bonded joints and/or 

repairs to flat surfaces or plates [1-2,5-6].   This assumption enables us to establish the 



relations between the adhesive strain components and the mid-plane displacements and 

rotations of the parent shell structures and the bonded patches. 

The third assumption is that the thin-walled parent structure and bonded patches can be 

modeled using the well-known the first-order or moderately thick plate and shell theory. The 

selection of the first-order thick plate and shell theory is due to the fact that transverse shear 

deformations play an important in composite patches or plates and shells. Based one the 

first-order plate and shell theory, all displacements in any point of the plate or shell can be 

determined using the three translational and three rotational deformations on the middle or 

neutral plane. In particular, the three displacements on both surfaces of the plates and shells 

or patches can be expressed in terms of the three translations and two rotations. This 

assumption is a natural extension of those adopted in simplified analysis of all types of lap 

joints [6]. 

Application of the above assumptions enables us to model the bonded patch to a thin-walled 

structure as a structure with two plates or shells sandwiching an adhesive layer, which only is 

subject to the three out-of-plane strains and stresses. Comparing to a full 3-D finite element 

modeling scheme, which models both parent thin-walled structures and bonded patches as 

well as adhesive layer using brick elements, the current scheme uses plate and shell elements 

and pseudo-brick elements for adhesive layer, and is referred to as a 2.5-D finite element 

analysis. 



3. FUNDAMENTAL FORMULATION OF ADHESIVE ELEMENT 

The assumptions described in Section 2 are used to develop the fundamental formulation for 

adhesive element for conducting 2.5-D finite element analysis of bonded repairs. In this 

section, a variational functional will be presented and then used to develop a theoretical 

framework for constructing adhesive elements. 

Figure 3-1 Schematic of a 6-node adhesive element 

3.1. Definition of adhesive element 

In this report, an adhesive element is defined as an element that comprises of one pseudo- 

brick adhesive element and two plate or shell elements. The two plate and shell elements are 

located on either side of the adhesive layer and offset by half thickness of the corresponding 

wall thickness of the element. Both plate and shell elements must have the same number of 

nodes to form the node pairs. At each node pair, the two plate and shell elements share the 

same normal, or in other words, the two nodes must locate on the normal of the element. 

Figure 3-1 depicts an adhesive element to illustrate the definition and limitation. As shown in 

this figure, there are three node pairs, i.e., node 1 and 4, node 2 and 5, and node 3 and 6 as 

represented by solid circles. As the 3-node plate element is a flat one, the two elements must 

have the same normal to their middle planes. Node 1 and 4 must be located along the normal 

passing through node 1 or 4. The hollow circles represent the pseudo nodes of the pseudo 

brick element for adhesive layer, and they are dependent on the corresponding nodes of the 

plate and shell elements. For example, pseudo node T is dependent on node 1. 



Introduction of this restrictions in node numbering and geometry makes it possible to 

incorporate the adhesive element into the commercially available software and makes it an 

easy and convenient job to generate meshes, particularly in the bonded area, for building up 

finite element analysis models. With such restrictions, it is still possible to model non- 

uniform thickness of adhesive and plates or shells by using different thickness configurations 

of adjacent elements. 

3.2. Variations! formulation 

For a thin-walled structure with a bonded repair, the total strain energy of the system can be 

divided into the following two parts: (a) strain energy due to deformation of the upper and 

lower shell element; and (b) strain energy due to deformation of adhesive layer. The 

formulations for these strain energy terms are given as follows: 

(a) Strain energy in the thin-walled structure Uu and the bonded patch U& 

For an adhesive element, using the first-order plate and shell theory (Reissner-Mindlin 

theory), the strain energy terms Uu and Ui can be given by 
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are the membrane, bending and shear strains respectively and the superscript "0" denotes the 

mid-plane of plate or shell element. For an orthotropic, linear elastic material, the sub- 

matrices in the material matrix are given by 
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in which Qk is off-axis modulus, hk {k=u, I) is the thickness of the upper and lower shell 

elements. 

(b) Strain energy in the adhesive layer JJA 

Basing on the assumptions given in the previous section, the strain energy in an adhesive 

layer is due to contributions of the three out-of-plane strains and can be written as 
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where EA and GA are the equivalent normal and shear moduli of the adhesive layer. g4, y'x 

and yA are the peel (normal) strain and the two shear strains, t is the adhesive thickness. 

3.3. Element stiffness matrix 

3.3.1. Element stiffness matrix for shell elements 

For the two shell elements, the element stiffness matrix can be expressed as 

\Kk] =     j[Bk]T[Dk][Bk]dA (k=u, I) (6) 
Element area 

in which [Bk ] = [ßk
m    B

k    Bk] and Bk
m, B

k and Bk are the matrix relating nodal displacement 

vector to strain vector for the element, e.g., 
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ek = 

Ok 
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where {qk} (k=u, l) denotes the nodal displacement vector of the thin-walled structure or the 

patch element. 

3.3.2. Element stiffness matrix for the pseudo brick element 

For the pseudo-brick element modeling the adhesive layer between the two shell elements, 

the peel and shear strains are assumed to be constant in the adhesive layer along the line 

between a pair of nodes. To illustrate the definition of the peel and two shear strains, let us 

consider a pair of nodes as shown in Figure 3-2, which are isolated from an adhesive element. 

According to the definition of the displacements of a degenerated plate or shell element, the 

nodal displacement of the pseudo-brick element modeling adhesive at the pseudo-node /' and 

/, can be expressed as 
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Figure 3-2 Schematic of a node pair 

u 

vf > 
w, 

10   0    0 

0   10^- 
2 

0   0   10 

-A 
2 

0 

0.,, 

(8a) 

10   0     0 

0   10^ 

0   0   10      0 

fh] Kl 
2 v? 
0 Wj 

0 °1 

(8b) 

where the superscript "°"denotes the mid-plane, subscripts i and; denote the upper and lower 

shell elements, respectively. hu and hi represent the thickness of upper and lower shell 

elements. 

The peel and two shear strains in the adhesive between pseudo-node V and / are constant 

and can be expressed as follows: 

ei = 

rA 

(W,. - Wj ) 
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or rewrite in matrix form as 
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Similar equations can be developed to express the peel and shear strains in terms of the nodal 

displacements at every pair of nodes. By employing the same interpolation functions as the 

displacement fields within each shell element, the peel and shear strain fields can be 

established within the pseudo-brick element for adhesive layer, and written in the following 

format: 

(10) 

where BA and BA are the matrices relating the strains to the nodal displacements of both upper 

and lower shell elements. It is worth noting that the strains may be calculated in the local 

coordinate system or even in nodal coordinate system depending on which shell element is 

selected to construct the adhesive element. 

The element stiffness matrix of the pseudo brick element for the adhesive layer can be 

expressed as follows 

[KA]=   J   [TJ 
Element area 
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where [7] can be either the transforming matrix between the local and nodal coordinate 

system or the one between the local and global coordinate system, depending on the shell 

element selected. 

Equation (11) can be rewritten in the following split form 
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(12) 

This is the expression for the element stiffness matrix for the pseudo-brick element for the 

adhesive layer. 

3.3.3. Element stiffness matrix for adhesive element 

The element stiffness matrix for the adhesive element, consisting of two shell elements and 

one pseudo brick element, can eventually be obtained by assembling the stiffness matrices of 

the two shell elements and the stiffness matrix of the pseudo brick element, namely, 

B = K        KjJ+K'_ 
(13) 

The load vectors for mechanical and thermal loading cab be obtained following the routine 

finite element analysis procedure. 

11 



4. DEVELOPMENT OF THREE ADHESIVE ELEMENTS 

Based on the fundamental formulations described in Section 3, this section presents the 

formulations for three specific adhesive elements, i.e., 8-node, 16-node and 18-node adhesive 

elements. The 8-node adhesive element is formulated in conjunction with two 4-node shell 

elements, while the 16- and 18-node adhesive elements are developed in conjunction with 

two 8-node Serendipity and 9-node Lagrange degenerated shell elements. To present the 

formulation for each adhesive element in a clear and concise form, the relevant shell element 

will be presented first and then followed by the formulation of the adhesive element. 

Lower shell 
element Adhesive layer 

(a) Overall view 

upper shell element 

adhesive element      lower shell element 

(b) Side view 

Figure 4-1 Schematics views of the 8-node adhesive element in local coordinate system 
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(a) global coordinate systems (b) local coordinate systems 

Figure 4-2 The global and local coordinate systems 

4.1. 8-Node adhesive element 

Figure 4-1 depicts the 8-node adhesive element which consists of two 4-node shell elements 

and one pseudo brick element located in local coordinate system. In the figure, the mid- 

planes of the two shell elements are denoted by thicker lines, while the pseudo brick element 

is shaded for identification. 

4.1.1. 4-node shell element 

The 4-node shell element developed by Zhu and Zheng [7] is used to develop the 8-node 

adhesive element. In this 4-node shell element, the curved shell is approximately modeled 

using a 4-node flat plate element, in which an additional drilling degree of freedom is 

incorporated to enable simulation of all three translations and three rotations, i.e., the six 

degrees of freedom. The shell element is constructed in a flat plane in the local coordinate 

systems. Figure 4-2 depicts the coordinate systems used, e.g., the global coordinate system, 

the local coordinate system and the parametric plane coordinate system. 

In the local coordinate system of the shell element, the first-order Reinssner-Mindlin plate 

theory is employed. The three displacements of the shell element in the local coordinate 

systems are defined as 

13 



U(x,y,z) = u°(x,y) + z9y(x,y) 

V(x,y,z) = v°(x,y)-zdx(x,y) (14) 

W(x,y,z) = w(x,y) 

where u°, v°, w are the translational displacements in the mid-plane of the shell, and 6X, 6y 

are the rotations of the directional normal about x and y coordinate respectively. In the shell 

element, each node has 6 degrees of freedom, i.e., 3 translational degrees of freedom u , v , w 

and 3 rotational degrees of freedom 6x,6y,9z. The displacement vector of the element can 

be written as: 

kY=(MTMTMTMT)T (i5) 

where {qj = (u° v° w,. dx> 0yi 0a.) (i =1,2,3,4 ). The displacement field in the 

shell element under the local co-ordinate systems can be divided into two parts 

{Uhil°}+{U6} (16) 

The second term on the right hand side of the above is due to the rotation of the drilling 

degree of freedom. Both terms on the right hand side of equation (16) can be expressed in 

the form of the following interpolations 

{c/°}=(M° v° w ex eJ=5X(«,° v? w, 0, eyiy (i7a) 
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N^a+ZiCXl+ViV) (18a) 
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The displacement field in the element, therefore, can be written as follows 

{U}={NX    N2    N3    N4M (20) 

where 

[N,) = 
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It is well known that shear locking can take place for the element based on the Reinssner- 

Mindlin plate theory. This is due to inadequate match of the orders of interpolation functions 

used for both translational and rotational deformations. There are several schemes that can 

be used to remove shear locking, such as the reduced or selective integration, or assumed 

strain method [8]. In this element the assumed strain method is used to establish a novel set 

of shape functions to calculate the shear strains. In the parametric plane of t, and rj, the 

conventional bilinear shape functions for the two rotations with respect to the local 

parametric axes are replaced by the following single linear shape functions 

6^ =a0+a1ri = ^Nii64i, 0,=*o+*.s=5X0., (22) 
i=i i=i 
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The 8 single linear shape functions in the above equations can be determined by enforcing the 

following conditions: 

LL W* ~ "VW* = °« L L (iV* - *f?)2d&n = 0 (23) 

The eight new linear shape functions for the two rotations are then given by 

^=■£(1-1?,!?). ^=A(i_^)       0-1,2,3,4) - (24) 

The new interpolation functions for the two rotational deformations in equation (22) are used 

to calculate the two shear strain components, £w and szy, which are only employed in the 

formulation of the out-of-plane shear strain energy. It is worth pointing out that the original 

shape functions in equation (17a) and (18a) are still used in determination of the bending 

strain energy. 

The strain energy term related to membrane and bending deformations can be determined 

using equations (17)-(19), and the shear strain energy terms can be calculated using equations 

(22) and (24). The stiffness matrix of the 4-node element can then be given by 

[K] = H\jT]T[B]T[D][B)[T] | J | d&rj (25) 

where [T\ is the transformation matrix between the local and global coordinate systems, [£>] 

is the material property matrix of the shell element as defined in equations (3) and (4), and h 

is the thickness of the shell element. According to the relationship of strain-displacement in 

the shell element, matrix [ß] can be defined as 

[*]=[*,    B2    B,    B4] (26) 

in which 
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(27) 

where 

N? =-[N,i(an)ibn -N^MM    N? =N,i(an)ibu +Nn,(a2l)Ai 

Nr=-lN9(al2),b2l -N^JAzl    N» =N^au)ib2l+Nni(a21)ibn 

(28) 

The terms a,y and by are the components in the Jacobian matrix [J] "between the local and 

parametric coordinate systems, and its inverse matrix [J]'1, which is given by 

[J] 
an «12 wr1 = X *12 

_a2l Q22. Ai b22_ 
(29) 

It should pointed out that the terms given in equation (28), (a/,-),-, are the values of atj at node / 

of the shell element. 

4.1.2. 8-node adhesive element 

As shown in Figure 4-1(a) the adhesive element is represented by the shaded area which is 

sandwiched between the two four-node shell elements, i.e., element with nodes of 1 to 4, and 

element having nodes of 5 to 8. Figure 4-1(b) depicts a cross-sectional side view of the 

adhesive element in the local co-ordinate system. As shown in Figure 4-l(b), fy, h2 and h 

denote the thickness of the upper shell element, lower shell element and the adhesive 

element, respectively. i\ , i\, /, and j'2 represent the pseudo nodes of the pseudo adhesive 

brick element between the two shell located at the adhesive-shell interfaces, i.e., the upper 

and lower surfaces of the adhesive layer related to the mid-plane node /,, i2, jl and j2 of the 
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upper and lower shell elements. As shown in the figure, hollow circles show the pseudo 

nodes of the adhesive element, while the nodes of the shell elements are marked as solid 

circles. 

Based on the assumptions in Section 3, the three displacements at pseudo node i\ and i\ of 

the adhesive element can be expressed in terms of nodal displacements of the upper and 

lower shell elements, as follows: 

u 

V .   = 

w 
<l 

u 

V .   = 

w 
i2 

1 0 0 0 
2 

0 1 0 
2 

0 

0 0 1 0 0 

1 0 0 0 

-fl, 

h 
2 

Ü 1 Ü 2 

2 
Ü 

0 0 1 0 0 

fe} 

fe} (30) 

where yt f = {w° + uB v° + ve w° 9xii 6yi } at node h of the upper shell element and 

jg(. J = [M° + ug^    v? + v8i    w°   6xi^    9yU } at node i2 of the lower shell element. 

Based on the assumptions, the three strain components in the local coordinates are constant 

along the line connecting node i[ and i'2 in the adhesive element as shown in Figure 3(b) and 

can be expressed in terms of the corresponding nodal displacements of the upper and lower 

shell elements as follows: 

F zz 
l 

y>; t 
r* 

0 0 1    0 0 0 0 -1 0 

0 1 o a. 
2 

0 0 -1 0 
h2 

~2 

l 0 0     0 -h. -1 0 0 0 
2 

(3D 
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Substituting equations (17), (18) and (30) into equation (31) yields 

Yyz ■=[K  B A%' 

0 
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■N? 
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0     N 
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-< 
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hX 
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0 

h2N» 

0 

-N 

-N 

0 

Qi 

- 12 

^3 

vl in 9* 

u\ 16 

(32) 

where qt are defined in equation (15) and [T\ is the transforming matrix between the local and 

global system at element level. It is worth noting that the above formulation is applicable to 

the case when adhesive thickness is constant as assumed in Section 3. When the adhesive 

thickness varies, a modified formulation must be developed to replace the above equation and 

take into account the effect of variable adhesive thickness. 

Substituting equation (32) into equation (11) and (12) yields the stiffness matrix of the 

pseudo brick element, which can be combined with the two stiffness matrices obtained using 

equation (25) to (27), to finally formulate an element stiffness matrix [K]48x48 as previously 

given in equation (13). 

4.2. 16-Node adhesive element 

Figure 4-3 depicts the 16-node adhesive element which consists of two 8-node Serendipity 

degenerated shell elements and one pseudo brick element. In the figure, solid circles denote 

the nodes of the two shell elements on the middle plane, while the hollow circles denote the 

pseudo nodes in the pseudo brick element as shaded for identification. 

19 



Figure 4-3 Configuration of the 16-node adhesive element 

±Z 

(a) Global, nodal and local co-ordinate system 

(b) Notation of nodal degrees of freedom 

Figure 4-4 Global, nodal and local coordinate system and notation of nodal degrees of 

freedom 
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4.2.1. 8-node Serendipity shell element 

Figure 4-4 depicts the shell element which is a curved lamina in three dimensional space. 

There are three Cartesian coordinate systems, namely, the global coordinate (X, Y, Z), 

the nodal coordinates (x, y, z) and the local (or quadrature point) coordinates 

(3c, y, z). The shape functions are used to interpolate both the geometry of the mid- 

surface and displacement. Each node has 5 degrees of freedom; 3 translations 

(M°> u°, u°) and 2 rotations (6-, 0-), as shown in Figure 4-4. 

Every node of the structure is associated with a unique nodal system in which z is normal 

to the shell surface. The local systems (x, y, z) are defined at each integration point 

with the z axis normal to the mid-plane and the 3c, y axes in the tangent plane of the 

integration point. The global system is used as a reference for the other two systems. 

The geometry of the degenerated shell is approximated by the isoparametric shape 

functions as follows: 
8 7 8 

*, =2>;*°+-C2>,7>/     (7 = 1,2,3) (33) 

where the expressions are written in the local co-ordinate system of a generic quadrature 

point. N, is Serendipity isoparametric shape function. The superscript "0" denotes the 

quantities evaluated at the mid-plane of shell element. £ is a coordinate along the normal 

of shell surface ranged (-1, 1) and h is the thickness of the shell. Pt is a unit vector 

pointing form the bottom node to the top node, which is defined by 

V^UxT-x\ottam) (34) 
k 

The displacement field of the degenerated shell is governed by the constraint that theP 

vectors remain straight in the deformed configuration, and is defined by 
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* 1=1 1=1 

(35) 

Based on the classical shell theory, three kinds of strains can be given as 

Membrane strains: 

k ] = {*„,    Bm2    -   BmS} (36a) 

Bending strains: 

&]={Bbl    Bb2    -   BbZ. 

1\ 

1% 

(36b) 

Shear strains: 

k]={*„ B*2 - Ba) (36c) 

where 

fe}=fe°    v»    *?    0fc    #,} (36d) 

WJ = 
ä£ 0     0   0   0 

0     Bf-    0   0   0 

5?    B%    0   0   0 
[*J = 

5'- 0 0 0 ** 
or 

51- 0 -5° 0 

Bl 51- 0 -B°. 
IX >y 
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\o  0   £° 0 7V,1 
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m i \« -n] 
W"^ L-*i *JJ 

-0 "0        -0 -0 
co ~ x4 y« -^xi 

I si Pi*-*** 

(36e) 

(36f) 

(36g) 

It be seen that the definition of bending strain in equation (36e) differs from that for resultant- 

stress degenerated shell element by the fact that the first two columns of Bb are not zero, the 

additional terms reflect the contributions of displacements to the curvature. The detailed 

derivation of (36) can be found in reference [9, 10]. 

All the strains in Equation (36) are evaluated in local coordinate system that is located at the 

Gauss integration point and the element stiffness matrices are also formed in this local 

coordinate system. Then the local element matrices must be transformed into the nodal 

system to assembly. 

4.2.2. 16-node adhesive element 

A 16-node adhesive element, which is located in the middle of two 8-node shell element, is 

shown in Figure 4-3. All the symbols are similar with those in Figure 4-1. 

Followed by the same procedure as described in Section 4.1.2, three strains in the adhesive 

element can then be given by 

F zz i 
y* t 
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0      0    Nl       0 

0    N,     0    ML 

AT,     0      0        0 
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[T]L 

1x 

02 

= [BW]p{q} 
(39) 
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where {#,} is defined in equation (36d) and [T]p is the transforming matrix between the local 

and nodal co-ordinate system at nodal level. All the strains are evaluated in the local co- 

ordinate system and adhesive element stiffness matrix must be transformed into the nodal 

coordinate system before it is assembled to the total stiffness matrix. 

Figure 4-5 Configuration of the 18-node adhesive shell element 

4.3. 18-node adhesive element 

Figure 4-5 depicts the 18-node adhesive element which consists of-two 9-node Lagrange 

degenerated shell elements and one pseudo brick element. All the symbols and marks are the 

same as those in Figure 4-3. 

The 9-node Lagrange degenerated shell elements is constructed by the same method as 

described in Section 4.2. The difference between 9-node and 8-node shell element is that 

different interpolation shape functions are used. An assumed strain stabilization procedure is 

introduced into 9-node shell element to avoid any spurious singular modes. For further 

derivation, please see reference [9,10]. 

All the formulations for 18-node adhesive element can be obtained in a same way as that for 

16-node adhesive element. 
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5. Numerical Verification 

To validate the developed adhesive elements, this section compares the stresses in adhesive 

layer predicted using the present software called BPATCH with those obtained using 

commercially available finite element analysis software STRAND 7. 

Let us consider a cantilever curved beam with a bonded patch as depicted in Figure 5.1. It is 

assumed that the patch is perfectly bonded to the parent beam. Both the beam and patch have 

the same thickness of H=l mm. The parent beam has a radius of curvature of 7?=100 mm. 

The bondline thickness is t=0.15 mm. The arc length of the patch is only half of that of the 

parent beam, which has a sector angle of 30°. Both the parent beam and reinforcing patch are 

clamped at the left end of 0=0°, and free at the other end. A vertical load of 20 N/mm is 

uniformly distributed along the width direction of the beam and applied on the middle plane 

of the parent beam at the free end, as shown in Figure 5-1. The width of the parent beam and 

patch is 10 mm. 

Both the parent beam and patch are assumed to be aluminum with a Young's modulus of 

E=70GPa and a Poisson's ratio of v=0.3. The adhesive has a Young's modulus of 

£c=2.4GPa and a Poisson's ratio of vc=0.33. 

adhesive 
ayer 

Figure 5-1 Cantilever curved beam under vertical load 

A commercial finite element analysis software called STRAND 7 is used to analyze the 

problem and to serve as a benchmark for the new software BPATCH.   Brick elements are 
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used to model the beam, patch and the adhesive layer. A large number of brick elements are 

used to maintain an appropriate aspect ratio of close to square elements in the R-9 plane near 

the end of the adhesive layer, namely, one brick element across the adhesive layer. Fine 

mesh of brick size of 0.15 mm is used near adhesive end and coarse mesh is used in the rest 

part of the structure. The arc length of the overlap is modeled using 30 by 2 newly developed 

adhesive elements, and the unsupported part is modeled with 15 by 2 corresponding shell 

elements using the BPATCH software to calculate the stresses in the adhesive layer. 

Figures 5-2 and 5-3 show the distributions of the shear stress GRT and peel stress ORR in the 

adhesive layer, which are calculated by utilizing different adhesive elements and STRAND7. 

It can be seen that the predictions given by the present three adhesive elements correlate well 

with the results of STRAND7. It should be noted that the size of element near the right end 

of the adhesive layer is only suitable for engineering purpose as it does allow that the shear 

stress becomes zero at the end of the squared-edged adhesive layer. It is noted that slight 

oscillations in shear stress predicted using the 16-node element and peel stress predicted 

using the 8-node element are observed at low stress level. This may-be due to existence of 

spurious zero energy modes. 

0 (degree) 

Figure 5-3 Shear stress distribution along the circumferential direction 6 
varying from 0 to 15° 
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-200 
6 (degree) 

Figure 5-3 Peel stress distribution along the circumferential direction 0 varying from 0 to 15° 
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6. Numerical Results and Discussion 

In the section, some numerical results are obtained using the new software BPATCH to 

investigate the effect of curvature on stresses in adhesive layer for a number of combinations 

of geometrical configurations, boundary and loading conditions; 

6.1. Single curved lap joint subjected to tensile load 

Figure 6-1 depicts a curved single-lap type of joint between two circular cylindrical shells 

under tensile loading at both ends. The joint is assumed to be simply supported at the both 

ends of the unsupported shell. The horizontal distance between both ends and the middle 

point of the overlap is /= 150mm. The half arc length of the bonded overlap is c=30mm. The 

width of joint is w=10mm. Both shells have the same thickness of H=5.0mm. The adhesive 

layer has a nominal thickness of J=0.15mm. The applied load at both ends is r=60N/mm, 

which is uniformly distributed along the width direction. Both shells have the same Young's 

modulus of £=70GPa and Poisson's ratio of v=0.3. The adhesive has a Young's modulus of 

£c=2.4GPa and a Poisson's ratio of vc=0.33. 

Figure 6-1 Schematic of a curved single-lap joint under tensile loading 

Figures 6-2 and 6-3 plot the peel stress a^ and the shear stress a^ in the adhesive layer of the 

curved single-lap joints along the full arc length x ranging from -c to c. In the figure, four 

values of the radius of curvature are selected, and they are R=2500, 5000, 10000 and infinity. 

Apparently when R=infinity, the joint becomes the classical flat single-lap joint. The results 

for R=infinity correlates well with the classical solution [5,6]. The two figures also show 

that, at the right end of the overlap, the peak peel stress varies from a positive value to a 

28 



negative one and the peak shear stress changes from a negative value to a positive one when 

the curvature (1/R) is increased from zero to 1/2500. The peak peel and shear stresses at the 

left end increase significantly in their absolute values but remain unchanged in their sign 

when the joint varies from a flat one to a curved one with a larger curvature. It is clear that a 

curved joint has a higher positive peak peel stress and larger shear stress than a flat one. As 

the peak peel stress is deem as the major contributing factor to peel dominant failure, it is 

believed that a curved single-lap joints is not preferred, and a flat single-lap joint carries more 

load than a curved single-lap one does. 

Hat plate     R=10000 

 R=5000       R=2500 

Arc length (mm) 

-10 0 10 

Figure 6-2 Comparison of peel stress distribution for the curved single-lap joints with various 
values of radius of curvature 

Figure 6-4 plots the peak peel and shear stresses at both ends versus the curvature for the 

single-lap joint considered. The solid and dashed lines denotes the results for peak peel and 

shear stresses respectively. It is clear that the absolute values of peak peel and shear stresses 

at the left end increase dramatically with an increased value of curvature. Same trends are 

also observed for the peak peel and shear stresses at the right end although there is a sign 

change when the curvature increases from zero to 10"4. The significant effect of curvature on 

peak stresses in adhesive layer implies that a great care must be taken when designing bonded 

joints having curvatures. The solutions from flat joints may not be directly transformed to 

those for curved joints. 
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Figure 6-3 Comparison of shear stress distribution for the curved single-lap joints with 
various values of radius of curvature 
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Figure 6-4 Peak stresses at both ends of the adhesive layer versus the curvature 1/R 

6.2. A cylindrical shell bonded two external patches symmetrically 

Figure 6-5 depicts a circular cylindrical shell bonded two external patches which are located 

symmetrically about the vertical line passing through the center of the shell. The longitudinal 

coordinate y is measured from the middle length of patch, which the circumferential 

coordinate x starts from one of the straight edges and is measured towards the other straight 
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edge. The length and width of the patch are the same and are equal to L=C=30mm. The 

overall length of the shell is W=300mm. The radius of the shell is i?=150mm. The thickness 

of the cylindrical shell and the patches are all 5.0mm. The thickness of adhesive layer is 

f=0.15mm. The longitudinal and circumferential coordinate y and x vary from -15 to 15 and 

from 0 to 30, respectively. 

Figure 6-5 A cylinder bonded two external patches symmetrically 

The shell is assumed to be metallic with a Young's modulus of £=70GPa and Poisson's ratio 

of v=0.3. The adhesive used has a Young's modulus of £c=2.4GPa and a Poisson's ratio of 

vc=0.33. To study the effect of different patching materials, two types of materials are used 

for the patches, one is metal with the same material properties as the shell itself, and the other 

is composite materials with all fibers aligned in the circumferential direction, i.e., in x- 

direction. The material properties adopted for a typical lamina are: E{=13l.0GPa, 

E2=E3=ll.2GPa, G12=Gn=6.55GPa, G23=4.375GPa and nn = n13=fi23=0.2S. 

Both ends of the cylindrical shells are supported by rigid diaphragms, which allow 

displacements only in the axial direction of the shell. There are two types of loading cases, 

internal pressure and external pressure, considered. The applied pressure is p=1.0MPa. 

Due to symmetry, only one quarter of the cylindrical shell is modeled using a finite element 

mesh with 15x15 elements used for the patch. 

The BPATCH software is used to calculate the stresses in the adhesive layer for this problem, 

which has four combinations: 
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(a) metallic shell with metallic patches under internal pressure 

(b) metallic shell with metallic patches under external pressure 

(c) metallic shell with composite patches under internal pressure 

(d) metallic shell with composite patches under external pressure   • 

All four material and loading combinations are analyzed, however, due to space limitation 

only the results for the last two cases are presented in details. 

Figures 6-6 to 6-8 and 6-9 to 6-11 show the distributions of stresses in the adhesive layer for 

the shell with two externally bonded composite patches subjected to internal and external 

pressure respectively. Figures 6-6 and 6-9 depict the three-dimensional distribution patterns 

of the three stresses, peel stress a^ and two shear stresses tyz, rxz, over half of the patch. 

Evidently, the peel stress aa is symmetrical with respect to y=0 and x=15, the shear stress 

rxz is symmetrical with respect to y=0, and the shear stress zyz is anti-symmetrical about 

y=0. It is clearly seen that peak values of all stresses seem to take place near the corners of 

the patch, which implies that a shape optimization near the corner must be performed in order 

to achieve an optimum shape design of the corner areas. From these two figures, it is seen 

that the shear stress T    is in general much smaller than other two stresses. The figures also 

reveal that high stresses occur along the y direction near one of the two straight edges of the 

patch, i.e., when x=0 or along the x direction near one of the two curved edges of the patch, 

i.e., when y is close to 15. 

Figures 6-7 and 6-10 show the stress distributions of the three stress components along the 

longitudinal axis y at JC=0, which represents one straight edge of the bonded patch and along 

which all three stresses tend to be more critical than others. Figures 6-8 and 6-11 depict the 

stress distributions along x-axis at the location of y where the corresponding stress reaches a 

peak near the curved edge of the patch. It is clearly seen that the peel stress along the straight 

edge for the case when subjected to an external pressure is much larger than that for the case 

when subjected to an internal pressure. As can be seen from Figures 6-8 and 6-11, at or near 

each corner the peel stress for the case under an external pressure is about 25 MPa comparing 

to 3 MPa for the case under internal pressure. This result indicates that it is preferred to 

apply an internal pressure to the shell with two external bonded composite patches rather than 

to apply an external pressure. 
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Figure 6-6 Stress distributions in the metallic cylindrical shell with two bonded external 

composite patches subjected to internal pressure 
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Figure 6-7 Stress distribution along y-axis at x=0 for the metallic cylindrical shell with two 

bonded external composite patches subjected to internal pressure 
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Figure 6-8 Stress distribution along x-axis with peak stress for the metallic cylindrical shell 

with two bonded external composite patches subjected to internal pressure 
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Figure 6-9 Stress distribution for the cylindrical shell with two bonded external composite 

patches subjected to external pressure 
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Figure 6-10 Stress distribution along y-axis at x=0 for the metallic cylindrical shell with two 

bonded external composite patches subjected to external pressure 
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Figure 6-11 Stress distribution along x-axis with peak stress for the metallic cylindrical shell 

with two bonded external composite patches subjected to external pressure 
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6.3 A cylindrical shell bonded two internal patches symmetrically 

This example is the same as that given in the previous section except that two externally 

bonded patches are replaced by two internally bonded patches. Figure 6-12 schematically 

depicts the shell with two internally bonded patches. 

L 
1/2 

< ► 
»72 

Lll 
< ► 

»72 

Figure 6-12 A cylinder bonded two internal patches symmetrically 

All geometrical and material parameters and all boundary and loading conditions are the 

same as those used in Section 6.2. 

Figures 6-13 to 6-15 and 6-16 to 6-18 show the distributions of stresses in the adhesive layer 

for the shell with two internally bonded composite patches subjected to internal and external 

pressure respectively. Figures 6-13 and 6-16 depict the three-dimensional distribution 

patterns of the three stresses over half of the patch. Similarly, peak stresses seem to take 

place near the corners of the patch. However, for the case under external pressure, the peak 

positive peel stress occurs along the mid-span of curved edge of the patch. Once again, it is 

seen that the shear stress T is in general smaller than other two stresses. It is clearly found 

that the peel stress along the straight edge for the case when subjected to an internal pressure 

is much larger than that for the case when subjected to an external pressure. As can be seen 

from the Figures, peak peel stress for the case under an internal pressure is just above 30 MPa 

comparing to about 2 MPa for the case under an external pressure. This result indicates that 

it is preferred to apply an external pressure to the shell with two internal composite patches 

rather than to apply an internal pressure. 
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Figure 6-13 Stress distribution for the metallic cylindrical shell bonded two internal 

composite patches subjected to internal pressure 
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Figure 6-14 Stress distribution along y-axis at x=0 for the metallic cylindrical shell bonded 

two internal composite patches subjected to internal pressure 
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Figure 6-15 Stress distribution along x-axis with peak stress for the metallic cylindrical shell 

bonded two internal composite patches subjected to internal pressure 
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Figure 6-16 Stress distribution for the metallic cylindrical shell bonded two internal 

composite patches subjected to external pressure 
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Figure 6-17 Stress distribution along y-axis at x=0 for the metallic cylindrical shell bonded 

two internal composite patches subjected to external pressure 
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Figure 6-18 Stress distribution along x-axis with peak stress for the metallic cylindrical shell 

bonded two internal composite patches subjected to external pressure 
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In the columns of H\=H2=5 mm in Table 6-1 listed are the values and locations of peak 

stresses in the adhesive layer for various patching and loading combinations. It can be found 

from the columns in the table that for the same loading condition, a composite patch either 

internal or external yields a lower peak peel stress than a metallic patch. It is also evident 

that application of the combinations, namely, internal patch under external pressure and 

external patch under internal pressure, is more favorable than the other two. 

6.4 Effect of shell and patch thickness 

To study the effect of shell and patch thickness, another four cases of thickness combinations 

are investigated. These four cases are: #i=5.0mm and #2=2.5 mm, #i=5.0 mm and #2=1.25 

mm, and H\=H2=2.5 mm as well as #i=5.0mm and H2=2.S mm. Table 6.1 summarizes the 

values and locations of peak stresses for different combinations of patches and loading 

conditions. A comparison of the peak peel stresses indicates that, for all thickness 

combinations considered, internal patches under an external pressure and external patches 

under an internal pressure are more favorable than the other two. The peak peel stress or its 

absolute value tends to increase as the patch thickness is reduced from 5 mm to 2.5 mm and 

1.25 mm for the following patching and loading combinations: (a) external patches and 

internal pressure; and (b) internal patches and external pressure. For the other two patching 

and loading combinations, i.e., internal patches plus external pressure, and external patches 

and internal pressure, the peak peel stress attains the lowest when Hl=5.0mm and H2=2.5 

mm comparing to the other two thickness combinations, H\=Ht=5.0 mm and #i=5.0 mm, 

H2=l-25 mm. The lowest values are larger than that for the case of external patches under 

internal pressure. 

For the patching and loading combinations: (a) external patches and internal pressure, (b) 

external patches and external pressure, and (c) internal patches and external pressure, the 

positive peak peel stress for the case of Hj=5 mm is much lower than that of #2=2.5 mm 

when H2 is kept as a constant of 2.5 mm. For example, for case (b), the peak stress is 15.7 

MPa when #/=5 mm and it becomes 103.2 MPa when Hj=2.5 mm. 

The results listed in Table 6.1 clearly indicate that the patch thickness must be optimally 

design to match the parent shell structure in order to minimize the positive peel stress under a 

given loading condition. 
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6.5 Effect of patch length 

To understand the effect of patch size on stresses in adhesive layer, numerical results are 

obtained for the shell with two external patches of eight extra lengths subjected to an external 

pressure. It is worth pointing out that all patches are square in shape. Figure 6-19 plots the 

peak or high stresses at location of x=0.21 and y=14.58 versus the patch length. Similarly, 

the peel stress is much larger than other two shear stresses. The peel stress initially increases 

with the length of the patch ranging from 30 to 60 mm, and then decreases with a further 

increase of the patch length ranging from 60 to 180 mm. It is evident that there may exist an 

optimum patch length for this particular problem that yields a minimum positive peel stress. 

It should be noted that at the selected location, x=0.21 and y=14.58, the positive peel stress 

peaks when the patch length is less than 150 mm, and the location of the positive peel stress 

moves when patch length is very long. To illustrate this variation, Figure 6-20 depicts the 

full 3-D views for the peel stress for a patch length of 60, 120 and 180 mm respectively. As 

shown in Figure 6-20(c), the positive peel stress for a patch length of 180 mm is smaller than 

the other two shown in Figure 6-20(a) and (b). The patch length also "affects the distribution 

patterns of the two shear stresses, which are also shown in Figure 6-20. 

50 

■ Peel stress 
• Shear stress (yz) 
■ Shear stress (xz) 

Length of the patch (mm) 

Figure 6-19 Stress (at x=0.21, y= 14.58) for different length of the external patch subjected to 
external pressure load with Hl = 5.0mm, H2 = 5.0mm 
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Figure 6-20 Stress distribution for a cylindrical shell bonded two external patches with 
different length subjected external pressure load 
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7. NONLINEAR FINITE ELEMENT ANALYSIS 

This section presents two formulations of nonlinear finite element analysis for bonded repair 

to curved thin-walled structures. One is for nonlinear finite element formulation when the 

thin-walled structures and patches undergo a large deformation, an the other one is when only 

the nonlinear adhesive behavior is taken into account in the nonlinear analysis. Numerical 

examples are given to illustrate the effect of nonlinearity on stresses in adhesive layer. 

7.1. Formulation of large deformations 

The large deformation formulation for the 4-node shell element, which is used in the 8-node 

adhesive element, is developed to investigate the effect of large deflection on stresses in 

adhesive layer. The Von Karman's nonlinear plate theory is used to take into account the 

moderately large deformations of the shell structure. Using this theory and following the 

finite element analysis procedure, the tangential element stiffness matrix can be written as: 

[K,]=[K0]+[^]+[Ka] (40) 

where [K0] is the linear stiffness matrix, [Ki] is the geometric stiffness matrix due to large 

deformation, and [Ka] is the initial stress matrix. They are given by 

[K0] = fjjßj [DlB0]j\dCdr, (41a) 

[Kl]=k£ABj[DlBMBj[DlBMBj[DlBltAd&'l (41b) 

fc]-rj>i N      N xy yy 

[G\j\dC4r\ (41c) 

in which [ß0], [BZ] and [G] are the linear, nonlinear and geometric matrix respectively. A^, 

Nyy and Nxy are the membrane stress resultants. |/| is the determinant of the Jacobian matrix, 

and [D] is the material property matrix of the shell element as given in Section 3. 
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According to the relationship of strain-displacement in the shell element, matrix [B0], [ß,] 

and [G] can be defined as follows: 

(a) Matrix [B0]: 

IAJ-L-SOI       #02      #03      B0i\ (42) 

which is given in Section 4 in details. 

(b) Matrix [G]: 

[GMG,   G2   G3   G4] (43a) 

where 

fe] = 
0   0^000 

0   0   N°y    0   0   0 
(43b) 

(c) Matrix [fij: 

feHslG] (44) 

W = 0 

0 w. 

w. 

0   0   0   0   0 

0   0   0   0   0 
(45) 

The tangential element stiffness matrix is first calculated in the local co-ordinate systems 

using the 2x2 Gaussian quadrature and then transformed into the global coordinate systems 

to assemble the total stiffness matrix. The well-known Newton-Raphson iteration scheme is 

employed to solve the nonlinear equilibrium equations in conjunction with a selected 

displacement convergence criterion. 
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7.2. Formulation including nonlinear adhesive behavior 

It is assumed that the thin-walled structures and the patches exhibit linear elastic behavior 

while the adhesive layer is nonlinear hyperelastic. In this case, the stress-strain relation of the 

adhesive is nonlinear but the material behavior is elastic with all deformations and 

displacements recover when unloaded. It is also assumed that the peel and shear stress-strain 

curves can be used separately to replace the moduli EA and GA in Section 3. Figure 7.1 

depicts a typical nonlinear stress-strain relations for FM-300 film adhesive [6]. 

CL, 

P 

00 

80 

60 

40 

20 

■ Peel stress 

■ Shear stress 

0 0.1 0.2 0.3 0.4 0.5 

Strain 

Figure 7-1. Typical peel and shear strain-stress curves for FM-300 film adhesive 

An incremental iteration scheme is implemented in this section to take the individual peel and 

shear stress-strain curves into account in formulating the element stiffness matrix. For a 

general finite element analysis, the equilibrium equation of the structure can be written as: 

Ku = P (46) 

where K is the total stiffness matrix, u is the displacement vector, P is the applied load vector. 

To implement incremental iteration procedure, the applied loads are divided into several 

incremental steps. In each incremental step, the modified Newton-Raphson iteration method 
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is employed to calculate the incremental displacements at the current load level. The iterative 

procedure is detailed as follows. 

1) Input data: defining geometry, loading, boundary conditions, material properties, etc. 

2) Increment of the applied loads: Ap = pin, wherep is the total applied loads, n is the 

total number of incremental steps, Ap is the incremental loads. The current total loads 

are P' =APxi, where i is the number of the current increment step. 

3) Residual forces yrr_j: the applied loads for the r'h iteration are the residual forces. 

\irr_l=K(ur_x)ur_l-Pi, where K{u) is the total stiffness matrix at the current 

displacements and u is the current total displacements. K{ur.\) is formed based on the 

nonlinear elastic behavior. For r=\, yr_x = AP . 

4) The tangent stiffness matrix: for each element, the elastic modulus is determined by 

it's stress level to form the tangent stiffness matrix Kl
r. For i=l, the tangent stiffness 

matrix is obtained assuming linear elastic behavior. 

5) Compute the incremental displacement Aur: Awr = [J^]~V,-i • 

6) Accumulate the total displacements for each element as ur = ur-1 + Aur. Check to see 

if the solution has converged. If no, return to step c. 

7) Check to see if the total loads are achieved. If no, return to step 2. 

8) Output the results. The program is ended. 

7.3. Numerical results and discussions 

7.3.1. Effect of large deflection of the shell and patch structure 

Geometrical nonlinear analysis of a metallic cylindrical shell bonded a composite patch 

subjected to various loads 

Two geometrical configurations of bonded repairs are considered in this section. These Two 

types of bonded repairs are schematically depicted in Figure 7-2. An internally or externally 

reinforced composite patch is bonded to the shell. A though-thickness crack along the width 

of the shell is introduced in the middle span of the shell along the circumferential direction as 

shown in Figures 7-2. 
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In this section, the circular cylindrical shell is assumed to be metallic and has a Young's 

modulus of 70 GPa and a Poisson's ratio of 0.3. The adhesive has a Young's modulus of 2.4 

GPa and a Poisson's ratio of 0.33. The composite patch is laminated using unidirectional 

carbon/epoxy tapes with all fibers aligned in the circumferential direction X. The nominal 

material properties of each ply are: £1=131 GPa, E2=E^=\\.2 GPa, Gi2=Gi3=6.55 GPa, 

023=4.375 GPa, ^12=^13=^23=0.28. The geometric parameters are: L=150mm, arc length 

c=30mm, width of curved plate w=10mm, thickness of shell and patch H=5mm and adhesive 

thickness 7=0.15mm. 

Several types of loading and boundary conditions are considered for the above two 

geometrical configurations. There are two types of boundary conditions. In the first type of 

boundary condition, the vertical displacements at both ends of the circular cylindrical shells 

are assumed to be zero, this is referred to as BC1. In the second one, both vertical and 

horizontal displacements at both ends of the circular cylindrical shells are assumed to be zero, 

which is referred to as BC2. Three loading cases were considered. In load case 1, a 

uniformly distributed load of 60 N/mm along the width of the circular cylindrical shell is 

applied at both ends of the bonded repair in the outwards horizontal direction. In load case 2, 

a uniformly distributed moment of 60 N along the width of the shell is applied at both ends of 

the shell. In load case 3, an internal pressure of 1 MPa is applied to the bonded repair. The 

three load cases are schematically depicted in all figure plots peak stresses versus the 

curvature. 

Three illustrative examples are considered by combining with various geometric 

configurations, loading and boundary conditions. The first two example are combination of 

load case 1 and 2 with boundary condition case 1 (BC1), while the third example is a 

combination of load case 3 and boundary condition BC2. 

Due to symmetry in geometry, material and all applied loads, only half of structure of the 

bonded repair shown in Figure 7-2 is modeled using the newly developed finite element 

analysis program. Along the half arc length of the bonded area 60 elements of equal length 

were used, and two elements were used in the width direction. Both "linear and geometrical 

nonlinear finite element analyses are performed for all cases. In all calculations, it is assumed 

that both shell adherends have the same radius of curvature, denoted by R, as shown in Figure 
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7-2. When R is infinite both adherends become flat, which represent the typical single-side 

bonded repair with flat adherends. When R has a finite value the curvature of the shell is 

given by 1/R. In the presentation of the effect of curvature on stresses for the three examples, 

peak stresses in adhesive layer are plotted versus the value of \IR. 

(a) Example 1: A curved shell with a bonded patch subjected to tensile load 

In this example, a circular cylindrical shell with an internally or externally bonded patch is 

assumed to be subjected to a tensile load in the outward horizontal direction (see the 

embedded drawing in Figures 7-3 and 7-4 at the both ends of the shell. Figures 7.3 and 7.4 

plot the peak peel and shear stresses in the adhesive layer for the externally and internally 

patched circular cylindrical shell with a crack. All solid lines represent the linear finite 

element analysis results, while all dashed lines are the nonlinear finite element analysis 

results. The "left" denotes the left end of the adhesive layer while the "middle" means the 

right end to the crack in the middle when half of the structure is modeled only. From this 

example, it is evident that the peak peel and shear stresses predicted by taking into account 

the large deflections are significantly lower than those obtained using linear finite element 

analysis. Another important finding is that the value of curvature 1/R has a profound effect 

on the peak stresses, namely, the larger the value of curvature 1/R, the greater the absolute 

value of the peak stresses. 

Comparison of Figures 7-3 and 7-4 reveals that: (a) the peak peel stress predicted in the case 

of externally bonded patch is smaller than that of internally bonded patch; (b) the absolute 

value of the peak shear stress for the case of externally bonded patch is larger than that of the 

internally bonded patch. As peel stress is generally regarded as more detrimental to the 

bonding strength than shear stress, it is thus believed that an externally bonded composite 

patch may be more adequate than the internal one for the case considered. 

(b) Example: 2 A curved shell with a bonded patch subjected to pure bending moment 

In this example, we assume that a circular cylindrical with an internally or externally bonded 

patch is subjected to a uniformly distributed bending moment (see the embedded drawing in 

Figures 7-5 and 7-6) at the both ends of the shell. Figures 7-5 and 7-6 plot the peak peel and 

shear stresses in the adhesive layer for the externally and internally patched circular 
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cylindrical shell with a crack. It is interesting to find that the value of curvature does not 

seem to influence the peak peel and shear stresses for the loading and boundary conditions 

considered. Further numerical results show that this is true for both cases of with and without 

crack in the middle span of the shell. The peak peel stress for the case with an externally 

bonded patch is lower than that with an internally bonded patch for the configuration with a 

crack under the considered loading and boundary conditions. It is worth pointing out that 

there exists a negligible difference between the linear and nonlinear results. 

(c) Example 3: A curved shell with a bonded patch subjected to internal pressure load 

This example considers the case when a shell with a bonded patch is subjected to internal 

pressure load and fixed at both ends. Figures 7-7 and 7-8 plot the peak peel and shear 

stresses in the adhesive layer for the externally and internally patched circular cylindrical 

shell without and with a crack under an applied internal pressure. The line types and marks 

used in this example are the same as those used in example 1. It is evident the effect of 

curvature on the absolute values of the peak stresses is significant. The absolute values of 

peak stresses tend to significantly decrease and the effect of geometrical nonlinearity 

becomes slightly less significant when the value of curvature 1/R is increased from 1/750 to 

1/150. 

Comparison of the peak peel stresses in Figure 7-7 and 7-8 unveils that maximum positive 

peel stress occurs at the middle end near the crack for both cases with an internally and 

externally bonded patch. The peak peel stress for the case with an internally bonded patch is 

actually larger than that for the case with an externally bonded patch. For example, when 

R=750, the linear analysis results show that the maximum peel stress near the crack for the 

case with an internally bonded patch is 25% larger than that for the case with an externally 

bonded patch. The results of this example indicate that an externally bonded patch is 

probably more adequate than an internally bonded patch under the considered loading and 

boundary conditions. 

(d) Example 4: A curved shell with a bonded patch subjected to an external pressure 

In this example, the cylindrical shell with a bonded patch is subjected to an external pressure 

and fixed at both ends.   Figures 7-9 and 7-10 plot the peak peel and shear stresses in the 
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adhesive layer for the externally and internally patched circular cylindrical shell with a crack 

under an external pressure. Only the results of linear analysis are presented as snap-through 

buckling can occur when large deflection is included. Evidently, the effect of curvature on 

the absolute values of the peak stresses is significant. Similar to the previous case, the 

absolute values of peak stresses significantly decrease when the value of curvature 1/R is 

increased from 1/750 to 1/150. Comparison of the peak peel stresses reveals that maximum 

positive peel stress occurs at the left end for the case with an internal patch. Similarly to the 

previous example, The results of this example indicate that an externally bonded patch is 

probably more favorable than an internally bonded patch. 

kZ 

Cracked shell 

(a) A cracked cylindrical shell with an externally boned patch 

AZ 

Cracked shell 

(b) A cracked cylindrical shell with an internally boned patch 

Figure 7-2 Two types of bonded repair configurations. 
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Figure 7-3 Peak peel and shear stresses in adhesive in the cracked cylindrical shell with an 

externally bonded patch versus curvature 
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Figure 7-4 Peak peel and shear stresses in adhesive in the cracked cylindrical shell with an 

internally bonded patch versus curvature 
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Figure 7-6 Peak peel and shear stresses in adhesive in the cracked cylindrical shell with an 

internally bonded patch versus curvature 
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Figure 7-7 Peak peel and shear stresses in adhesive at the left end in the cracked cylindrical 

shell with an externally bonded patch subject to an internal pressure versus curvature 
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Figure 7-8 Peak peel and shear stresses in adhesive at the left end in the cracked cylindrical 

shell with an externally bonded patch versus curvature 
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Figure 7-9 Peak peel and shear stresses in adhesive at the middle (cracked end) in the cracked 

cylindrical shell with an externally bonded patch under an external pressure versus curvature 
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Figure 7-10 Peak peel and shear stresses in adhesive at the middle (cracked end) in the 

cracked cylindrical shell with an internal patch under an internal pressure versus curvature 

7.3.2. Effect of adhesive nonlinear behavior 

In this case, the typical adhesive stress-strain curves for the FM-300 film adhesive as shown 

in Figure 7-1 are used in all calculations. 
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(a) Example 5 

In this example, a non-cracked circular cylindrical shell is bonded with an external patch. It 

has the same geometrical configuration as that shown in Figure 7-2(a) except that no crack 

exists in the middle of the shell, and the same boundary conditions. A uniformly distributed 

tensile load of 30 N/mm is applied along both ends of the shell at five equal load increments. 

The radius of curvature of the shell is taken as i?=300 mm. Both the shell and patch are 

metallic be metallic with a Young's modulus of 70 GPa and a Poisson's ratio of 0.3. Figure 

7-11 compares the distributions of both peel and shear stresses in adhesive layer along half of 

the bonded length in the circumferential direction obtained using linear and nonlinear 

adhesive properties. It is seen that for this example both peel and shear stresses at the left end 

are significantly affected by the nonlinear adhesive properties. Figure 12 plots the peak peel 

and shear stresses at the left end versus the applied load. This figure clearly shows that when 

nonlinear adhesive bahavior becomes effective when the applied load is above 10 N/mm. 

100 

Peel stress (linear) 

Peel stress (nonlinear) 

Shear stress (linear) 

Shear stress (nonlinear) 

Arc length (mm) 

•15 -10 0 

Figure 7-11 Stress distribution in bondline for a continuous plate/shell with an externally 
bonded patch loaded in tension at both ends (P=30.0N/mm) 
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Figure 7-12 Peak stress at different load level for a continuous plate/shell with an externally 
bonded patch loaded in tension at both ends (P=30.0N/mm) 

(b) Example 6 

In this example, we consider the circular cylindrical shell with two symmetric bonded patches 

as defined in Section 6.2 and 6.3. Both ends of the shell are supported by rigid diaphragms, 

which allow displacement only in the axial direction of the shell. Due to symmetry, only one 

quarter of the structure is modeled using fine mesh near the periphery of the patch and coarse 

mesh in the remaining area. All geometrical and material properties are the same as those 

used in Section 6.2 and 6.3, except that the nonlinear peel and shear stress-strain curves are 

employed in this example. Two types of patch combinations are considered, namely, both 

patches are either externally or internally bonded. Two of materials are selected for the 

bonded patches, and they are metal and composite materials. The material properties are the 

same as those used in Section 6.2 and 6.3. Two load cases, i.e., internal pressure and external 

pressure, are considered. The applied pressure is 5 MPa, which is applied to the structure at 

equal five load increments, namely, p=1.0, 2.0, 3.0, 4.0 and 5.0MPa. All together eight 

problems are analyzed in this example, namely, 2 loading cases for 4 geometrical and 

material configurations. 

Figures 7-13 to 7-15 depict the contours of the peel and two shear stresses over half of the 

bonded patch obtained by assuming linear and nonlinear adhesive properties. It is evident 

that nonlinear adhesive behavior can significantly influence the peak stresses, particularly the 

peak peel stresses in this example. However, material nonlinearity does not seem to greatly 

change the topologies of the stress distributions. 
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Figures 16 and 17 depict the distributions of the peel stress and two shear stresses along the 

longitudinal direction from y=-15 to y=15 at one patch edge x=0 and along the 

circumferential direction from x=0 to x=15 near the patch edge y=14.58. Both figures show 

that there exists a significant difference only in the peel stress between the linear and 

nonlinear analyses. 

Table 7.1 summarizes the maximum peel and shear stresses for the eight problems solved 

using linear and nonlinear finite element analysis procedure incorporating nonlinear adhesive 

behavior. Similarly, consideration of nonlinear adhesive behavior tends to reduce peak 

stresses dramatically. For this example, the peak peel stress can be reduced up to 50%. An 

comparison of all peel stresses unveils that for considered metallic and composite patches, 

external patching is preferred when the shell is subjected to an internal pressure and internal 

patching is preferred when subjected to an external pressure. 

Table 7-1 The values and loci of linear and nonlinear peak stresses in the adhesive* 

Patch Load 

Linear stress Nonlinear stress 

Peel stress 
o-JMPa) 

Shear stress 
Tyz(MPa) 

Shear stress 
T,z(MPa) 

Peel stress 
o^(MPa) 

Shear stress 
zyz(MPa) 

Shear stress 
rÄ(MPa) 

External 
metallic 

external 
148.0 
(A) 

29.2 
(A) 

42.5 
(A) 

70.8 
(A) 

24.4 
(A) 

35.1 
(A) 

External 
metallic 

internal 
25.4 
(B) 

14.9 
(A) 

49.0 
(A) 

24.7 
(B) 

11.6 
(A) 

37.1 
(A) 

Internal 
metallic 

external 
-28.3** 

(D) 
10.9 
(A) 

50.0 
(A) 

-27.0 
(D) 

8.6 
(A) 

36.3 
(A) 

Internal 
metallic 

internal 
207.4 
(A) 

-25.2 
(A) 

-147.4 
(A) 

71.5 
(A) 

-12.2 
(A) 

-51.3 
(A) 

External 
composite 

external 
130.2 
(A) 

-14.0 
(A) 

31.0 
(A) 

70.1 
(A) 

-12.1 
(A) 

27.5 
(A) 

External 
composite 

internal 
14.2 
(C) 

6.6 
(A) 

54.7 
(A) 

13.5 
(C) 

5.4 
(A) 

38.4 
(A) 

Internal 
composite 

external 
-16.8** 

(D) 
4.4 
(A) 

55.9 
(A) 

-15.8 
(D) 

3.7 
' (A) 

38.8 
(A) 

Internal 
composite 

internal 
156.7 
(A) 

-8.3 
(A) 

-148.2 
(A) 

71.5 
(A) 

-6.2 
(A) 

-51.3 
(A) 

*The upper case letters in the brackets indicate the values of the x and y coordinate at the 
following point: A(14.58, 14.58); B(0.21, 11.42); C(0.21, 12.58); D(0.21, 13.42) 
** Negative peel stress indicates that there is no positive peel stress or the positive peel stress 
is negligible. 
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Figure 7-13 Peel stress distributions for the shell with external patches under external 

pressure of 5.0MPa, (a) linear analysis, and (b) nonlinear analyses 
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Figure 7-14 Shear stress distribution for the shell with external patches under external 

pressure of 5.0MPa, (a) linear analysis, (b) nonlinear analysis 
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Figure 7-15 Shear stress distribution for the shell with external patches under external 

pressure of 5.0MPa, (a) linear analysis, (b) nonlinear analysis 
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Figure 7-16 Stress distribution along y-axis at x=0 for the shell with two external patches 

under an external pressure of 5.0MPa) 
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Figure 7-17 Stress distribution along x-axis at y=14.58 for the shell with two external patches 

under an external pressure of 5.0MPa) 
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8. THERMAL STRESS ANALYSIS 

In this section, thermal stress analysis is performed for the thin-walled structures with bonded 

patches. 

8.1. Fundamental formulation 

The relationship between stress and strain of any ply in a composite shell can be expressed 

as: 

o. 

*y 

ßl. 0,2 0,6 0 0 ^-«,Ar 

Ö21 Ö22 Ö26 0 0 ey -a^Ar 

Ö61 Ö62 Ö66 0 0 kx-a*Ar 

0 0 0 Q« Ö45 r* 
0 0 0 Ö54 Ö55 .    r» 

(47) 

where ß(> 0'» 7 = 1» 2, 4, 5, 6) are the off-axis stiffness coefficient,   ax, ay, a^ are the off- 

axis coefficient of thermal expansion and Ar is the temperature change. 

The relationship between the off-axis and on-axis coefficient of thermal expansion is: 

ax = ax cos 9 + a2 sin 9 

ay = ax sin2 9 + a2 cos2 9 

a^ =2(a, - a2) sin 9 cos 9 

(48) 

where a, and a2 are the longitude and cross on-axis coefficient of thermal expansion, 

respectively. 9 is the ply angle. 

Then the stress resultants in the cross-section of shell can be expressed as: 

M 

Q 

A    B 0" e rNT' 

B    D 0 K . —. MT 

0    0 H y. 0 

(49) 
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where N, M, Q are the membrane, moment and shear stress resultants, respectively. A, B, D, 

H are defined as equation (3) in Section 3.2. e, K and7 are membrane, bending and shear 

strain. NT, MT are membrane and moment resultants caused by temperature change, which 

are defined as follows, 

(Nj ,Mf) = f_'h/2 Qtj (1, z)aj ATdz        (/, ; = 1, 2, 6) (50) 

where h is the thickness of shell. 

The equilibrium equation can be written as: 

[K]{q} = {F} + {R] (51) 

where [K] is the stiffness matrix: 

[Kl = jA[BV 

A    B 0" 

B   D 0 [ 
0    0 H 

[B]dA (52) 

[B] is the geometric matrix, A is the area of the element, {q} is the displacement vector. {F} 

is the applied load vector. {R} is the thermal load vector cased by temperature change, which 

is 

{*}=£[*]> 
NT 

M7 

0 

\dA (53) 

8.2. Numerical results and discussion 

Thermal stress analyses of the same bonded circular cylindrical shells as described in Section 

6.2 and 6.3 are performed. The temperature change in the adhesive layer is not considered in 

the analysis. The following six cases are analyzed 
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1) Metallic shell with external metal patches. 

2) Metallic shell with internal metal patches. 

3) Metallic shell with external composite patches. 

4) Metallic shell with internal composite patches. 

5) Composite shell with external composite patches. 

6) Composite shell with internal composite patches. 

All material properties used are the same as those in Section 6.2 and 6.3. The coefficient of 

thermal expansion of the metallic material is assumed to be a = 0.23xlO"4. The coefficients 

of thermal expansion of the composite material are taken as 

«! =-6.3xl0"8, a2 = 2.88xl0~5, in which subscript 1 indicates the fiber direction and 

subscript 2 the transverse direction. The applied thermal loading is temperature change from 

220°C down to 20°C. 

Figures 8-1 to 8-6 plot the three stresses along (a) the y-axis at x=0 and (b) the x-axis at 

y=14.58 for the above six cases. As shown in Figures 8-1 and 8-2, the peak peel stress is 

positive for case 2 and negative for case 1, and thus external metallic patches are more 

preferred than the internal ones. For case 3 and 4, there seems to be no difference between 

the peak peel stresses, which are significantly high than those of the first two cases. This 

may indicate that there exists no difference between internal and external patching from the 

point of view of peel stress. For the last two cases, when both parent shell and patches are 

both composites, similar to the first two cases, external patching is more favorable than 

internal patching. 

It is worth pointing out that composite patching to a metallic shell creates very high peel 

stress comparing to metallic patching to a metallic shell and composite patching to a 

composite shell. 
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Figure 8-1(a) Thermal stress distribution along y-axis at x=0 for the metallic cylindrical shell 

with external metallic patches 
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Figure 8-1 (b) Thermal stress distribution along x-axis with peak stress for the metallic 

cylindrical shell with external metallic patches 
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Figure 8-2(a) Thermal stress distribution along y-axis at x=0 for the metallic cylindrical shell 

with internal metallic patches 

30 

-40 

Peel stress (y=14.58) 

Shear stress (yz, y=14.58) 

shear stress (xz, y=14.58) 

x(mm) 

Figure 8-2(b) Thermal stress distribution along x-axis with peak stress for the metallic 

cylindrical shell with internal metallic patches 
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Figure 8-3 (a) Thermal stress distribution along y-axis at x=0 for the metallic cylindrical shell 

with external composite patches 
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Figure 8-3(b) Thermal stress distribution along x-axis with peak stress for the metallic 

cylindrical shell with external composite patches 
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Figure 8-4(a) Thermal stress distribution along y-axis at x=0 for the metallic cylindrical shell 

with internal composite patches 
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Figure 8-4(b) Thermal stress distribution along x-axis with peak stress for the metallic 

cylindrical shell with internal composite patches 
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Figure 8-5 (a) Thermal stress distribution along y-axis at x=0 for the composite cylindrical 

shell with external composite patches 
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Figure 8-5(b) Thermal stress distribution along x-axis with peak stress for the composite 

cylindrical shell with external composite patches 
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Figure 8-6(a) Thermal stress distribution along y-axis at x=0 for the composite cylindrical 

shell with internal composite patches 
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Figure 8-6(b) Thermal stress distribution along x-axis with peak stress for the composite 

cylindrical shell with internal composite patches 
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9. CONCLUSIONS 

In this report, a novel finite element formulation has been developed for developing 2.5-D 

adhesive elements. Three adhesive elements, namely, 8-node, 16-nod and 18-node adhesive 

elements, are developed using the new formulation and then validated by correlating with the 

results predicted using the commercial finite element software. Both large deflections of 

parent shell structures and nonlinear adhesive behavior are taken into account in the 

formulation. Thermal loading is also incorporated in the formulation to enable analysis of 

bonded repair under a combined mechanical and thermal loading. The newly developed 

elements can be used to quickly calculate stresses in the adhesive layer of bonded repairs to 

curved thin-walled structures. The adhesive element provides an efficient and cost-effective 

means of modeling bonded overlap area in bonded repairs. A large variety of numerical 

examples have been analyzed to provide an in-depth understanding of the curvature on 

stresses in adhesive layer. The results from the selected numerical examples demonstrate the 

following points: 

(a) The curvature of a parent structure may have a profound effect on peak stresses in 

adhesive layer, depending on loading and boundary conditions; 

(b) The peak peel and shear stresses may increase or decrease with an increased curvature 

depending on loading and boundary conditions; 

(c) Externally bonded patches seem to create less peak peel stress than internally bonded 

patches for the cylindrical shells under an internal pressure, while internally bonded 

patches seem to create less peak peel stress than externally bonded patches for the 

cylindrical shells under an external pressure; In other words, external patches are 

preferred when the shell is under an internal pressure while internal patches are preferred 

when under an external pressure; 

(d) Both large deflection and adhesive nonlinear behavior can have a significant influence on 

the peak values and distributions of the three stresses in the adhesive layer; 

(e) External patching is preferred when a cylindrical shell is subjected to a negative 

temperature change; 

(f) The size and thickness of the bonded patch may have an important effect on the peak peel 

stresses. 
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